LeetCode-146. LRU Cache

问题描述

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

  • LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
  • int get(int key) Return the value of the key if the key exists, otherwise return -1.
  • void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4

Constraints:

  • 1 <= capacity <= 3000
  • 0 <= key <= 104
  • 0 <= value <= 105
  • At most 2 * 105 calls will be made to get and put.

解答

哈希表快速查找的特性和双向链表的有序性相结合

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
* @Description: 146. LRU Cache
* @Author: libk
* @Github: https://github.com/libk
*/
/**
* Your LRUCache object will be instantiated and called as such:
* var obj = new LRUCache(capacity)
* var param_1 = obj.get(key)
* obj.put(key,value)
*/
/**
* @param {number} key
* @param {number} value
*/
const DListNode = function (key, value) {
this.key = key
this.value = value
this.next = null
this.pre = null
}
/**
* @param {number} capacity
*/
const LRUCache = function (capacity) {
this.hash = {}
this.capacity = capacity
this.count = 0
this.dummyHead = new DListNode()
this.dummyTail = new DListNode()
this.dummyHead.next = this.dummyTail
this.dummyTail.pre = this.dummyHead
}

/**
* @param {number} key
* @return {number}
*/
LRUCache.prototype.get = function (key) {
let curNode = this.hash[key]
if (curNode) {
this.moveToHead(curNode)
return curNode.value
} else {
return -1
}
}

/**
* @param {number} key
* @param {number} value
* @return {void}
*/
LRUCache.prototype.put = function (key, value) {
let curNode = this.hash[key]
if (curNode) {
curNode.value = value
this.moveToHead(curNode)
} else {
curNode = new DListNode(key, value)
this.hash[key] = curNode
this.addToHead(curNode)
this.count++
if (this.count > this.capacity) {
let tailNode = this.dummyTail.pre
this.removeFromList(tailNode)
delete this.hash[tailNode.key]
this.count--
}
}
}

/**
* @param {DListNode} curNode
* @return {void}
*/
LRUCache.prototype.removeFromList = function (curNode) {
curNode.pre.next = curNode.next
curNode.next.pre = curNode.pre
}

/**
* @param {DListNode} curNode
* @return {void}
*/
LRUCache.prototype.addToHead = function (curNode) {
curNode.pre = this.dummyHead
curNode.next = this.dummyHead.next
this.dummyHead.next.pre = curNode
this.dummyHead.next = curNode
}

/**
* @param {DListNode} curNode
* @return {void}
*/
LRUCache.prototype.moveToHead = function (curNode) {
this.removeFromList(curNode)
this.addToHead(curNode)
}